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Abstract I will report on some recent developments concerning the problem of estimating
the Hausdorff dimension of the singular sets of solutions to elliptic and variational problems.
Emphasis will be given on some open issues. Connections with measure data problems will
be outlined.
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1 Wild sets

An important feature of elliptic and variational problems in the vectorial case is the one of
exhibiting singularities: while under reasonable assumptions solutions are everywhere reg-
ular in the scalar case, in the vectorial one they turn out to be continuous only outside a
negligible, closed subset, called the singular set, which can be a very wild one. It is the aim
of this note to point out some recent developments in the study of singular sets, some con-
nections to other regularity issues, and a few open problems. To begin with, let me consider
variational integrals of the type

F(v, A) :=
∫

A
F(x, v, Dv) dx, (1)

defined for Sobolev maps v ∈ W 1,p
loc (�, R

N ), and open sets A ⊆ �; I shall often denote
F ≡ F(v) ≡ F(v,�). Here n ≥ 2, N ≥ 1,� is a bounded open set in R

n , while, unless
otherwise specified, I am assuming p > 1. The integrand F : � × R

N × R
N×n → R is of
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class C2 in the third variable, satisfying
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν|z|p ≤ F(x, v, z) ≤ L(1 + |z|p)

ν(1 + |z|2) p−2
2 |λ|2 ≤ 〈Fzz(x, v, z)λ, λ〉 ≤ L(1 + |z|2) p−2

2 |λ|2

|F(x, u, z) − F(y, v, z)| ≤ Lω(|x − y| + |u − v|)(1 + |z|p) ,

(2)

for all x, y ∈ �, u, v ∈ R
N and z, λ ∈ R

N×n , where 0 < ν ≤ L and ω : R
+ → (0, 1) is a

continuous, non-decreasing modulus of continuity, such that for some α ∈ (0, 1),

ω(s) ≤ sα. (3)

Assumption (2)2 describes a controlled, uniform convexity of the integrand F , via growth
conditions imposed on the second derivatives Fzz , which are in turn prescribed accordingly to
the ones in (2)1. Convexity in the gradient variable of F is the main assumption considered
above. Assumption (2)3, together with (3), means that (x, v) 	→ F(x, v, z)/(1 + |z|)p is
Hölder continuous with respect to (x, v) with exponent α ∈ (0, 1), uniformly with respect
to z.

Local minimizers of F are maps u ∈ W 1,p(�, R
N ) such that F(u, A) ≤ F(v, A),

whenever A ⊂⊂ � and u − v ∈ W 1,p
0 (A, R

N ).
Beside functionals I will consider homogeneous non-linear elliptic systems in divergence

form

div a(x, u, Du) = 0 , (4)

where a : � × R
N × R

N×n → R
N×n is a continuous vector field of class C2 in the third

variable, satisfying
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|a(x, v, z)| ≤ L(1 + |z|p−1)

ν(1 + |z|2) p−2
2 |λ|2 ≤ 〈az(x, v, z)λ, λ〉 ≤ L(1 + |z|2) p−2

2 |λ|2

|a(x, u, z) − a(y, v, z)| ≤ Lω(|x − y| + |u − v|)(1 + |z|p−1) ,

(5)

for all x, y ∈ �, u, v ∈ R
N and z, λ ∈ R

N×n , and ω : R
+ → (0, 1) is as in (3). A weak

solution to (4) is of course a map u ∈ W 1,p(�, R
N ) such that

∫
�

a(x, u, Du)Dϕ dx = 0 ∀ϕ ∈ C∞
c (�) . (6)

In the following, when using the word regular for a map I will usually mean “Hölder con-
tinuous” or, more often, “with Hölder continuous gradient”. The latter is the focal point of
the regularity theory, after which higher regularity of solutions can be obtained via standard
boot-strap arguments.

In the scalar case N = 1, when minima and solutions are real-valued functions, singu-
larities do not show up and minimizers are everywhere regular in the interior:

Theorem 1 Let u ∈ W 1,p(�) be either a local minimizer of the functional F under the
assumptions (2)–(3), or a solution to (4) under the assumptions (5)–(3). Then Du ∈ C0,α/2

loc (�,

R
n) in the case of functionals, and Du ∈ C0,α

loc (�, R
n) in the case of equations.
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See for instance [30,45]. The main ingredient here is a suitable application of ideas going
back to DeGiorgi [15], and these are essentially scalar ones. In terms of pointwise regularity
of solutions, the last two results are the best possible. Notice the decrease in the Hölder
exponent as we move from solutions to minima: counterexamples show that minimizers are
not C0,α-regular in general, they are only C0,α/2-regular.

In the vectorial case N > 1 the situation drastically changes and minima and solutions
generally lose a lot of regularity properties. This was first shown by DeGiorgi [16]; then
came a series of counterexamples, including the one of Nečas [53] who showed that even in
the case of an analytic integrand of the type F(x, u, Du) ≡ F(Du) minima to (1) may be
not C1,α for any α. The minimizer found by Nečas was Lipschitz continuous: the possibil-
ity of lowering the regularity of the counterexamples remained an open problem. This was
settled by Šverák and Yan [57], who showed that even when considering the favorable case
of smooth and quadratic-growth functionals as Nečas, there exist unbounded minimizers. In
general the singular set in non-empty, but when considering very special structures [36,58].

After realizing that solutions to vectorial problems can be irregular the next step is the
so-called partially regularity, i.e. proving that the regularity properties of the scalar case are
preserved at least on large subsets. Typical partial regularity statements are

Theorem 2 Let u ∈ W 1,p(�, R
N ) be a local minimizer of the functional F , under the

assumptions (2)–(3). Then there exists an open subset �u ⊂ � such that |� \ �u | = 0, and
Du ∈ C0,α/2

loc (�u, R
N×n).

Theorem 3 Let u ∈ W 1,p(�, R
N ) be a weak solution to the system (4), under the assump-

tions (5) and (3). Then there exists an open subset �u ⊂ � such that |� \ �u | = 0, and
Du ∈ C0,α

loc (�u, R
N×n).

Theorems 2 and 3 are the vectorial counterpart of the scalar Theorem 1; here we see that
Hölder continuity is preserved only on an open subset �u ⊂ �; the set

�u := � \ �u (7)

is called the singular set of u. The proofs of Theorems 2 and 3 automatically provide a
characterization of �u as the set of “non-Lebesgue points” of Du in the sense that

�u = �0
u ∪ �1

u , (8)

where

�0
u :=

{
x ∈ � : lim inf

ρ↘0
−
∫

B(x,ρ)

|Du(y) − (Du)x,ρ |p dy > 0 or lim sup
ρ↘0

|(Du)x,ρ | = ∞
}

�1
u :=

{
x ∈ � : lim inf

ρ↘0
−
∫

B(x,ρ)

|u(y) − (u)x,ρ |p dy > 0 or lim sup
ρ↘0

|(u)x,ρ | = ∞
}

.

Here |(Du)x0,r |, |(u)x0,r | denote the average of Du, u over the ball B(x0, r). Indeed the
proofs are based on the following fact: a point x0 ∈ ∂� is regular, that is Du is Hölder
continuous in a neighborhood of x0, if and only if

−
∫

B(x0,r)

|Du(x) − (Du)x0,r |p dx ≤ ε , (9)

where ε > 0 is suitably small number; moreover |(Du)x0,r | must stay bounded at every scale
r . The proofs also require a similar condition for u. Since such conditions are satisfied almost
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everywhere by Lebesgue’s differentiation theory, partial regularity with the characterization
in (8) follow.

In the form given here Theorems 2 and 3 are the result of the efforts of several authors, and
their first versions were originally and independently obtained by Giaquinta, Giusti and Mo-
dica [26–28], and independently by Ivert [37,38]; the methods of such authors partially rely
on suitable freezing techniques, originally pioneered by Campanato [8] in the case of linear
elliptic equations. The use of Campanato spaces is indeed fundamental here. For the present
optimal form I refer to Duzaar and Grotowski [18], who introduced an interesting new tech-
nique coming from Geometric Measure Theory problems: the A-harmonic approximation
method [20].

Now a natural question arises: how large can the singular set �u be? The problem is the
following: let dimH(�u) denote the Hausdorff dimension of �u , then

“Is dimH(�u) < n true”? (10)

Question (10) is the most natural one after proving partial regularity. The first answers, dating
back to the seventies, are for the special case div a(Du) = 0, when

dimH(�u) ≤ n − 2 . (11)

The latter estimate is essentially obtained using the classical results asserting the existence of
second derivatives of solutions, that in turn implies (11); see [10,22]. The validity of (11) has
been proved by Campanato and Cannarsa [9] for solutions to certain higher order systems, in
cases to which formerly existent techniques did not apply. Such results immediately apply to
functionals as in (1) when F(x, u, Du) ≡ F(Du), via the use of the Euler-Lagrange system.
A first progress toward general structures was made in [26] that treated the very special case
F(x, u, Du) ≡ c(x, u)|Du|p .

Question (10) for functionals (1) and systems (4) was raised immediately after the first
proofs of Theorems 2 and 3, both for systems - see [22], page 191, and [28] page 115 – and
for functionals – [23] Sect. 3, and [25] open problem (a), page 117.

The general answer to (10) is “yes” as shown in [42–44,46,47]. In the next section I shall
present an approach to the problem, together with estimates for the Hausdorff dimension of
the singular sets.

2 Lp-Hölder continuity and singular sets

The approach I will follow here is to outline a duality between the loss of C0,α-regularity
of Du and presence of the singular set �u on one side, and persistance of a weaker form of
Hölder continuity and estimation of dimH(�u) on the other one.

A measurable map w : � → R
N belongs to the fractional Sobolev space W σ,p(�, R

N )

for parameters σ ∈ (0, 1) and p ∈ [1,∞), provided the following Gagliardo-type norm is
finite:

‖w‖W σ,p(�) =
(∫

�

|w(x)|p dx

) 1
p +

(∫
�

∫
�

|w(x) − w(y)|p

|x − y|n+σ p
dx dy

) 1
p

. (12)

The map w belongs to the Nikolski space N σ,p(�, R
N ) if and only if

‖w‖N σ,q (�) := ‖w‖L p(�) + sup
h,e

(∫
Ah

|w(x + he) − w(x)|p

|h|σ p

) 1
p

, (13)
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where the supremum is taken considering h ∈ R \ {0}, e ∈ Rn such that |e| = 1, and
Ah := {x ∈ � : dist(x, ∂�) > |h|}. The local variants W σ,p

loc (�) and N σ,p
loc (�) are defined

in the obvious way, and the strict inclusions

W σ,p(�) ⊂ N σ,p(�) ⊂ W σ−ε,p(�) (14)

hold for every ε ∈ (0, σ ). Such spaces are particular instances of another family of spaces, the
so called Besov spaces Bσ

p,q [55]: indeed Bσ
p,p ≡ W σ,p, Bσ

p,∞ ≡ N σ,p , and Bσ∞,∞ ≡ C0,σ .
Now, let us read C0,σ -regularity as σ−Hölder continuity in the L∞-norm

‖Du(x + h) − Du(x)‖L∞(�′) ≤ [Du]0,σ |h|σ �′ ⊂⊂ � , (15)

for any h ∈ R
n such that |h| ≤ dist(�′, ∂�). Whilst (15) is in general lost in the vectorial

case due to the presence of the singular set, it happens that the gradient belongs to some
Nikolski space, and so Hölder continuity is kept in a weaker norm

‖Du(x + h) − Du(x)‖L p(�′) ≤ ‖u‖N σ,q (�)|h|σ �′ ⊂⊂ �, 1 < p < ∞ . (16)

In other words when passing from the scalar to the vectorial case Hölder continuity is pre-
served modulo being read in the right form. The natural dual aspect of this fact is that an
estimate like (16) allows one to bound the Hausdorff dimension of the singular set: indeed,
see for instance [46], a classical result in potential theory is

Theorem 4 Let w ∈ W σ,p
loc (�, R

k), where σ ∈ (0, 1], p ≥ 1 are such that σ p < n. Let �u

denote the set of non-Lebesgue points of w in the sense of

�w :=
{

x ∈ � : lim inf
ρ↘0

−
∫

B(x,ρ)

|w(y) − (w)x,ρ |p dy > 0 or lim sup
ρ↘0

|(w)x,ρ | = ∞
}

.

Then its Hausdorff dimension dim(�w) satisfies dim(�w) ≤ n − σ p.

The strategy is now clear: ones uses (16) to bound the Hausdorff dimension of singular set
via Theorem 4 and the characterization (8); keeping (14) in mind. We shall now report on
some results. The first I report is for special structures, and is taken from [43].

Theorem 5 Let u ∈ W 1,p(�, R
N ) be a local minimizer of the functional

F(v) ≡
∫

�

f (x, Dv) + g(x, v) dx,

under the assumptions (2),(3). Then

Du ∈ W
α−ε

p ,p

loc (�, R
N×n), ∀ε ∈ (0, α). (17)

Therefore, denoting by �u ⊂ � the singular set of u in the sense of (7), we have dimH(�u) ≤
n − α.

For a special class of systems I quote the following result from [46]:

Theorem 6 Let u ∈ W 1,p(�, R
N ) be a weak solution to the system

div a(x, Du) = 0 , (18)

under the assumptions (5),(3). Then

Du ∈ W
2α−ε

p ,p

loc (�, R
N×n), ∀ε ∈ (0, 2α). (19)
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Therefore, denoting by �u ⊂ � the singular set of u in the sense of (7), we have dimH(�u) ≤
n − 2α.

Notice the analogy between the estimate of Theorem 6 and (11): the latter is recovered for
Lipschitz continuous coefficients (Theorem 6 actually applies when α = 1 too, see [46]
again). Theorems 5–6 are “twins”, and should be compared to Theorems 2–3: in both cases
the rate of Hölder continuity of the coefficients (3) influences that of the solutions in the
similar way, but we pass from the C0,α-regularity of the scalar case, to the α-Hölder con-
tinuity in the L p-sense of (17)–(19); again keeping (14) in mind. In turn the regularity of
the coefficients reflects on the dimension estimates for the singular sets. It would be very
interesting to discuss the optimality of the singular set estimates in the last two theorems. At
the moment I have no conjectures on this.

When passing to the general structures in (1) and (4) things considerably worsen, and I
first have to recall that both in the case of minimizers of the functional (1), and of solutions to
(4), so-called higher integrability holds: there exists a number q , depending only on n, N , p
and L/ν, such that

Du ∈ Lq
loc(�), q > p. (20)

The dependence on p is harmless: assume p ∈ [γ1, γ2] ⊂ (1,∞); then q only depends on
γ1, γ2. Inclusion (20) holds even under the only assumption (2)1 for functionals, and (5)2 for
systems, and it is basically a consequence of the celebrated Gehring’s lemma [39].

With the former higher integrability property of Du available, we have the following result
from [43]:

Theorem 7 Let u ∈ W 1,p(�, R
N ) be a local minimizer of the functional F under the

assumptions (2)–(3). Then

Du ∈ W
σ0−ε

p ,p

loc (�, R
N×n), σ0 := min{α, q − p} ∀ ε ∈ (0, σ0). (21)

Therefore, denoting by �u ⊂ � the singular set of u in the sense of (7), we have dimH(�u) ≤
n − σ0 < n.

Instead, for the case of systems the following theorem holds [47]:

Theorem 8 Let u ∈ W 1,p(�, R
N ) be a weak solution to the system (4) under the assump-

tions (5),(3). Then

Du ∈ W
σ1−ε

p ,p

loc (�, R
N×n), σ1 := min{2α, q − p} ∀ ε ∈ (0, σ1) . (22)

Therefore, denoting by �u ⊂ � the singular set of u in the sense of (7), we have dimH(�u) ≤
n − σ1 < n.

In the above-mentioned papers [47] and [43] the proofs are actually given for the case p ≥ 2;
the case 1 < p < 2 can be treated with some technical modifications; see for instance [19].
Note that since the difference q − p essentially depends on L/ν, then the bound on the
singular set depends essentially on this number via (21)–(22): the integrability properties of
the gradient (20) control the size of the singular set. This is explained as follows. Looking
at Theorems 5–6 we see that the regularity of the coefficients (3) influences the dimension
estimates for the singular set: the higher is α, the smaller dimH(�u) is ensured to be. When
passing to the general structures (1) and (4) then u(x) comes into the play, acting as a mea-
surable, very irregular coefficient; nevertheless (20) can be used to control the oscillations
of u(x), and a singular set estimate is still possible, thereby depending on q .
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In the same spirit, when n ≤ p + 2 the map u(x) is more regular via the use of certain
low dimensional regularization techniques, and therefore better results can be proved. More
precisely, we have once again dimH(�u) ≤ n − 2α for systems, and dimH(�u) ≤ n − α in
the case of functionals. As a matter of fact the singular set is always empty in the two-dimen-
sional case n = 2; see last section of [43]. Note that the case of functionals poses remarkable
additional difficulties with respect to the one of systems. Indeed, while systems can be tested
by test functions, this is not the case for functionals. Under the assumptions considered here
the functional F is not differentiable, and does not possess the associated Euler-Lagrange
system, due to the fact that Hölder continuity u is all is assumed in (2)3. But even in the
favorable case that F(x, u, z) is smooth, the Euler-Lagrange system would turn out to be a
system with a right hand side with critical growth, un-treatable without an L∞-smallness
condition on the minimizer [36]. On the other hand minimizers of smooth functionals are in
general unbounded in the vectorial case [57]. The approach adopted in [43] is variational, and
essentially uses the minimality of the map u. The technique relies on a localization method
that makes once again essential use of the Euler-Lagrange systems of certain convex compar-
ison functionals, and finally leads to establish a higher (fractional) differentiability of Du via
a comparison method: here minimality is crucial. The situation here is in some sense similar
to the one of harmonic maps: critical points of the associated Euler-Lagrange system, that
is weakly harmonic maps, can be irregular on a dense set, as shown by Riviére [54], but for
minimizers a partial regularity theory is available, as first shown by Schoen and Uhlenbeck
[56]. Also for minimizers of functionals as in (1) crucial information is lost when not using
minimality, that is: just using the fact that a map is a critical point without using its minimality
too does not yield regularity information. This is something we are going to see again, and
in the most dramatic way, when dealing with quasiconvexity in the next section.

3 Quasiconvexity, potential theory, and set porosity

Convexity is suitable to ensure lower semicontinuity for variational integrals, and therefore
existence of minima. In the vectorial case there is another condition, much weaker that con-
vexity, which is sufficient for lower semicontinuity, and actually necessary under certain
natural assumptions: this is the so-called quasiconvexity. For the sake of simplicity I shall
consider here functionals of the type

F(v) :=
∫

�

F(Dv) dx . (23)

Introduced by Morrey in [50], quasiconvexity of the integrand F(·) means that
∫

(0,1)n
[F(z0 + Dϕ(x)) − F(z0)] dx ≥ 0, (24)

for every ϕ ∈ C∞
c ((0, 1)n, R

N ), and for all z0 ∈ R
N×n . Quasiconvexity ensures lower

semicontinuity in the weak topology of appropriate Sobolev spaces [1,50]. Though the quas-
iconvexity of F(·) may seem to depend on the choice of the integration domain in (24), a
simple covering argument shows that it is possible to replace (0, 1)n by any other open subset;
more information is for instance in the book of Dacorogna [14]. Quasiconvexity also plays an
important role in the theory of non-linear elasticity, and in mathematical materials science,
see the papers of Ball [4] and Müller [51]. It is a difficult notion to deal with, basically due
to its purely non-local character [41].
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Partial regularity as in Theorem 1 holds for minima of quasiconvex integrals, under suitable
assumptions. More precisely, condition (24) must be reinforced in the so called uniform-strict
quasiconvexity, firstly introduced by Evans [21]

ν

∫
(0,1)n

(1 + |z0|2 + |Dϕ|2) p−2
2 |Dϕ|2 dx ≤

∫
(0,1)n

[F(z0 + Dϕ) − F(z0)] dx . (25)

Roughly speaking, this plays the same role that (2)2 plays for convex integrals, as the fol-
lowing statement demonstrate [2,11].

Theorem 9 Let u ∈ W 1,p(�, RN ) be a local minimizer of the functional F in (23), such
that F(·) is a C2-function satisfying (2)1 and (25). Then there exists an open subset �u ⊂ �

such that |� \ �u | = 0, and Du ∈ C0,α
loc (�u, R

N×n), for any α ∈ (0, 1).

Also in this case the characterization in (8) holds. The first partial regularity result for mini-
mizers of quasiconvex integrals has been proved in a by now classical paper of Evans [21].
The proof under the essentially optimal conditions considered here is given in [2] for the
case p ≥ 2, and in [11] for 1 < p < 2. Note that the case p ∈ (1, 2) poses a few non-trivial
technical difficulties, since quasiconvexity does not allow for those duality methods typical
of the convex case [33]. The result extends also to general functionals of the form (1), under
assumption (2)3.

Again, the first natural question is (10); see [24], Sect. 4.2. Under the generality of Theorem
9 the problem is still open. The point is that quasiconvexity is a very delicate and “unstable”
notion that prevents the application of many standard convexity techniques. For instance, any
approach based on the Euler-Lagrange system seems to require convexity, or some variations
of it [34], and the Euler-Lagrange system in itself cannot yield regularity results. This was
recently shown by Müller and Šverák [52]: they demonstrated even the absence of partial
regularity for critical, non-minimizing points of uniformly strictly quasiconvex integrals of
the type in (23). This is not the case for convex functionals, by Theorem 3 applied to the
Euler-Lagrange system.

Here I want to describe the first answer to (10), given in [44]. It is restricted to the case
of Lipschitz minimizers, a condition anyway satisfied by minimizers in several instances of
quasiconvex functionals [12,40].

Theorem 10 Let u ∈ W 1,∞(�, R
N ) be a local minimizer of the functional F in (23), such

that F(·) is a C2-function satisfying (2)1 and (25) with p ≥ 2, and let �u := � \ �u be the
singular set of u, in the sense of Theorem 9. Then there exists a positive

δ ≡ δ(n, N , p, L/ν, ‖u‖W 1,∞) > 0, (26)

also depending on the integrand F(·), but independent of the minimizer u, such that dimH(�u)

≤ n − δ < n.

The number δ appearing in (26) is in principle explicitly computable by carefully keeping
track of the constants involved in the proof; moreover it stays bounded away from zero as soon
as p varies in a compact interval of [2,∞). It depends on the integrand F(·) via two features
only: first, the modulus of continuity of its second derivatives Fzz , second, the associated
“growth function” G(M) := sup|z|≤M |Fzz(z)|/(1 + |z|)p−2. Theorem 10 extends to more
general quasiconvex functionals of the type in (1), once again assuming (2)3; interestingly,
in this case, contrary of what happened for Theorem 7, δ is still independent of the Hölder
continuity exponent α in (3): this is basically the effect of the Lipschitz continuity of the
minimizer.
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Let me give you a glimpse of the proof. From now on I shall restrict for the simplicity
to the quadratic growth case p = 2, that already contains many of the essential features
of the problem; accordingly I will assume that second derivatives of F(·) are bounded:
|Fzz(z)| ≤ L . To prove Theorem 10 Kristensen and I employed a suitably localized form of
certain potential theory estimates due to Dorronsoro [17]. In turn this and a suitable Cacciop-
poli’s type inequality for minima [21] imply that for all balls B(x0, 4R) ⊂ � with radius R
smaller than a suitable one R0, it holds

∫
B(x0,R)

∫ R

0
−
∫

B(x,r)

|Du(y) − (Du)x,r |2 dy
dr

r
dx ≤ c

∫
B(x0,2R)

|Du|2 dx . (27)

This is Carleson type estimate for the “excess functional”

E(x, R) := −
∫

B(x,r)

|Du(y) − (Du)x,r |2 dy, (28)

and it is a first regularity information on the oscillations of Du. I would like to remark here
that inequality (27) does not require the Lipschitz continuity of minimizers yet. Now assume
that the minimizer u is Lipschitz continuous; then (27) turns to

−
∫

B(x0,R)

∫ R

0
−
∫

B(x,r)

|Du(y) − (Du)x,r |2 dy
dr

r
dx ≤ c‖u‖2

W 1,∞ . (29)

The latter inequality allows to prove a geometric property of the singular set called “set poros-
ity”, asserting that �u has “holes of uniform size at any scale”. More precisely, for every point
x0 ∈ �u and every ball B(x0, R) ⊂⊂ �, there exists at least another ball BλR ⊂ B(x0, R),
such that �u ∩ BλR = ∅. Here λ ∈ (0, 1/2) essentially depends on n, N , L/ν and ‖u‖W 1,∞ ,
but is independent of any of the balls considered. BλR is “the hole”, and its size λR is uniform
in that λ does not depend on R. In turn, this fact and a standard covering argument allow
to prove that dimH(�u) ≤ n − δ, where δ depends on λ, n, and therefore ultimately on
n, N , L/ν and ‖u‖W 1,∞ .

The technique just outlined is completely different from the ones adopted in the convex
case, but surprisingly, at the end it shows an interesting connection between the two cases.
Indeed, when F(·) is convex we have Du ∈ W σ,2 for some σ > 0, see Theorem 7 and recall
that now p = 2. In turn a result of potential theory, see [3] Sect. 4.8, yields

∫
B(x0,R)

∫ R

0

(
−
∫

B(x,r)

|Du(y) − (Du)x,r |
rσ

dy

)2 dr

r
dx ≤ c‖Du‖2

W σ,2 , (30)

for any B(x0, 4R) ⊂⊂ �. Using now a well known reverse Hölder-type inequality for the
excess E(x0, R) (see [30], inequality (9.54)) it is easy to conclude with

∫
B(x0,R)

∫ R

0
−
∫

B(x,r)

|Du(y) − (Du)x,r |2
r2σ

dy
dr

r
dx ≤ c‖Du‖2

W σ,2 . (31)

The previous inequality is valid provided σ > 0, and therefore holds only in the convex case.
Now (27), which is valid for general, even non-Lipschitzian minima, looks exactly as the
borderline case of (31) when σ ↘ 0, and it is in some the trace of the (fractional) differen-
tiability properties of the gradient that eventually get lost in the passage from convexity to
quasiconvexity.

123



218 J Glob Optim (2008) 40:209–223

4 A problem on the Dirichlet problem

In this section I want to briefly describe a basic and only partially solved boundary regularity
problem. Let me consider the following Dirichlet problem

{
div a(x, u, Du) = 0 in �

u = u0 on ∂�,
(32)

where u0 ∈ C1,α(�, R
N ) and ∂� is C1,α-regular, and the assumptions (5)–(3) are in force.

The natural question is whether partial regularity extends up-to-the-boundary: can we say
for instance that a.e. boundary point, with respect to the usual surface measure, is a regular
one? That is: Du is Hölder continuous in a neighborhood (of the relative topology of �) of
the considered boundary point. In fact [31,35] a boundary point x0 ∈ ∂� is regular if and
only if for some small positive number ε we have

−
∫

B(x0,R)∩�

|Du − (Du)B(x0,R)∩�|p dx < ε. (33)

This is the natural boundary version of the standard interior “ε-regularity” criterium (9). Now,
while (9) yields information in the interior case, unfortunately condition (33) does not, since
it is a priori verified only a.e. with respect to the Lebesgue measure, while the boundary ∂� is
a null set. The problem of finding the existence of even one regular boundary point remained
totally open even for basic structures as in (18), see comments at page 246 of [22]. The only
known answer was available for quasilinear systems div(b(u)Du) = 0, or for regularity of
u rather than Du [13,29,32]. This gap is in sharp contrast to what happens in the case of
elliptic equations, where full regularity carries up to the boundary. The first general results
concerning the existence of regular boundary points for Dirichlet problems as in (32) have
been given by Duzaar and Kristensen and I in [19]. The idea is to carry out the estimate of
Theorem 5 up to the boundary; then assuming α large implies that a.e. boundary point is
regular. When in low dimensions n ≤ p + 2 larger classes of systems can be considered.

Theorem 11 Let u ∈ W 1,p(�, R
N ) be a weak solution to (32), under the assumptions (5),

and assume that

α > 1/2. (34)

Moreover, assume that either n ≤ p + 2, or a(x, u, Du) ≡ a(x, Du). Then almost every
boundary point x ∈ ∂�, in the sense of the usual surface measure, is a regular point, i.e. the
gradient is C0,α-regular in a neighborhood of x, relative to �. Moreover, when p = 2, we
can allow α ≥ 1/2 − δ, for some δ ≡ δ(n, N , L/ν) > 0.

I explicitly remark that the problem for the range α ∈ (0, 1/2) remains open, and moreover
it is not yet clear whether (34) is already optimal or not.

5 Measure data problems

The viewpoint and the techniques adopted in Sect. 2 reveal to be useful when considering
elliptic equations involving measure data

{−div a(x, Du) = µ in �

u = 0 on ∂�.
(35)
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Solutions are considered in the usual distributional sense [5]. Here I assume that � ⊂ R
n

is a bounded domain, µ is a Radon measure with finite total variation |µ|(�) < ∞, while
a : � × R

n → R
n is a Carathèodory vector field satisfying the following standard monoto-

nicity, and Lipschitz assumptions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν(s2 + |z1|2 + |z2|2) p−2
2 |z2 − z1|2 ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉

|a(x, z2) − a(x, z1)| ≤ L(s2 + |z1|2 + |z2|2) p−2
2 |z2 − z1|

|a(x, 0)| ≤ Ls p−1,

(36)

for any z1, z2 ∈ R
n, x ∈ �, where p ∈ [2, n], n ≥ 2, 0 < ν ≤ L , s ≥ 0. At certain stage, I

shall also require the following Lipschitz continuity assumption:

|a(x, z) − a(x0, z)| ≤ L|x − x0|(s2 + |z|2) p−1
2 , ∀x, x0 ∈ �, z ∈ R

n . (37)

I shall now report on some recent, sharp results contained in [48] and [49]. A measure appear-
ing in the right hand side in (35) is a natural source of singularities for solutions. The prime
example is given by �pu = δ, where δ is the Dirac measure charging the origin. In this case

the unique solution is, up to a re-normalization constant, the “Green’s function” |x | p−n
p−1 when

p < n, and log |x | for p = n. Nevertheless, Hölder continuity in the L p-sense as in Sect. 2
still persists:

Theorem 12 Under the assumptions (36)–(37), there exists a solution u ∈ W 1,1
0 (�) to the

problem (35) such that

Du ∈ W
1−ε
p−1 ,p−1

loc (�, R
n), (38)

holds whenever ε ∈ (0, 1), and in particular

Du ∈ W 1−ε,1
loc (�, R

n), when p = 2. (39)

More in general

Du ∈ W
σ(q)−ε

q ,q

loc (�, R
n), (40)

whenever ε ∈ (0, σ (q)), where

p − 1 ≤ q < b, σ (q) := n(1 − q/b), b := n(p − 1)

n − 1
. (41)

The latter is the first higher regularity result for solutions to measure data problems: up to
now it was only known the existence of a solution u such that

Du ∈ Lq , ∀q < b = n(p − 1)

n − 1
, (42)

see [5], while in Theorem 12 higher derivatives are shown to exist; when p = 2 second
derivatives “almost exist”. Now consider the model case p = 2, and �u = f . The standard
Calderón-Zygmund theory asserts that f ∈ L1+ε implies Du ∈ W 1,1+ε for every ε > 0,

while the result does not hold in general for ε = 0. On the other hand (39) tells us that
for non-linear elliptic problems with measure data the Calderón-Zygmund theory continues
below the borderline case W 1,1, which is revealed to be a “break-point” rather than an “end-
point”. Inclusion (38), where we do not approach full first derivatives as ε ↘ 0, is the natural
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analogue of what already happens in the homogeneous case: W 1,p-solutions to �pu = 0
are not known, and by some people not expected to be twice differentiable; nevertheless
their gradients are in suitable fractional Sobolev spaces. Inclusions (38)–(39) are a partic-
ular case of (40), which is in turn sharp for every choice of the parameters in (41). Indeed
Du �∈ W σ(q)/q,q

loc in general, otherwise applying Sobolev embedding in the fractional case
we would have

Du ∈ W σ(q)/q,q
loc �⇒ Du ∈ L

nq
n−σ(q)

loc ,

but this is impossible since nq/(n − σ(q)) = n(p − 1)/(n − 1) = b, while D|x | p−n
p−1 �∈ Lb

loc.
On the other hand the application of the same embedding and (38) allow to locally recover
the known integrability result for the gradient in (42).

The results proposed up to now are valid for general measures, and their sharpness stems
from considering Dirac measures as just seen. It is therefore natural to wonder whether they
change when considering measures diffusing on sets with higher Hausdorff dimension. A
natural way to quantify this is to consider the following decay condition:

|µ|(BR) ≤ cRn−θ 0 ≤ θ ∈ [0, n], (43)

for any ball BR of radius R. Assuming (43) does not allow µ to concentrate on sets with
Hausdorff dimension less than n − θ , and improves the regularity of solutions in that the
number θ replaces everywhere the dimension n. We recall that a measurable function w is
the in weak space Mt (�), t ≥ 1, iff

sup
λ≥0

λt |{x ∈ � : |w| > λ}| =: ‖w‖t
Mt (�) < ∞. (44)

Moreover, w is in the weak Morrey space Mt,θ (�) iff ‖w‖Mt (BR) ≤ cRn−θ whenever
BR ⊂ �, for some c > 0 . Of course for θ < n it is Mt,θ ⊂ Mt,n ≡ Mt . We have

Theorem 13 Under the assumptions (36) and (43) with θ ≥ p, there exists a solution
u ∈ W 1,1

0 (�) to the problem (35) such that

Du ∈ Mm,θ
loc (�, R

n), m := θ(p − 1)

θ − 1
. (45)

In particular, in the limit case θ = p we have Du ∈ Mp,p
loc (�, R

n).

Note that general measures satisfy (43) with θ = n, when m reduces to b in (42), and we
find back the known result Du ∈ Mb, otherwise when θ < n when m > b. On the other
hand, it is possible to prove that if µ satisfies (43) for θ < p, then µ belongs to the dual
of W 1,p and problem (35) admits a solution Du ∈ L p . The result Du ∈ Mp for θ = p
perfectly reflects this fact. The fractional derivatives of the gradient are themselves in the
natural Morrey space: referring to (38) and assuming (37) we have

∫
BR

∫
BR

|Du(x) − Du(y)|p−1

|x − y|n+1−ε
dx dy ≤ cRn−θ , ∀ε ∈ (0, 1). (46)

See [48] for more details. Let me just recall that inequality (46) extends the classical results
for �u = f , where f ∈ Lq,θ implies D2u ∈ Lq,θ for q > 1; inequality (46) provides
the natural analogue for q = 1. This is a regularity results in the so called Sobolev-Morrey
spaces, introduced by Campanato [6,7].
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